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Abstract

This study explores the predictive modeling of red wine
quality based on physicochemical properties using a com-
prehensive dataset from the Vinho Verde region in Portu-
gal. Employing a variety of machine learning techniques,
including CNN, Random Forest, and XGBoost, the research
aims to establish robust predictive models that correlate
specific physicochemical attributes with sensory outcomes.
Principal Component Analysis (PCA) was utilized to reduce
dimensionality and filter noise from the data, enhancing
model accuracy. The study also investigates the application
of Huber Loss to manage outliers effectively, which often
degrade predictive performance in traditional regression
models. Our findings suggest that combining feature en-
gineering with advanced ensemble techniques significantly
improves the prediction of wine quality, highlighting the po-
tential of machine learning in enhancing wine production
and quality assessment processes. The practicality that our
model can assist vintners and marketers in improving the
quality and marketability of their products is demontrated
through rigorous experiments.

1. Introduction

Wine quality prediction, particularly for wines from the
Vinho Verde region in Portugal, is a complex task influ-
enced by numerous physicochemical properties such as
fixed acidity, volatile acidity, citric acid, residual sugar,
chlorides, free sulfur dioxide, total sulfur dioxide, density,
pH, sulphates, and alcohol content. This study treats the
prediction as both a classification and a regression prob-
lem, aiming to determine quality scores. Utilizing a dataset
from the UCI Machine Learning Repository, we apply ma-
chine learning models, specifically CNN, Random Forest,
XGBoost to predict wine quality. These models help elu-
cidate the relationships between various physicochemical
properties and sensory outcomes, offering valuable insights
for winemakers to enhance production strategies and market
positioning.
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Figure 1. The two most effective models we evaluated for predict-
ing red wine quality—-Random Forest with PCA and XGBoost with
PCA&Huber Loss.

2. Data

The dataset comprises measurements of various physico-
chemical properties from wine samples. The data includes
eleven features and one target variable (quality). These fea-
tures are fixed acidity, volatile acidity, citric acid, residual
sugar, chlorides, free sulfur dioxide, total sulfur dioxide,
density, pH, sulphates, and alcohol content. Table 1 shows
the data presented in a structured table format.

2.1. Data Completeness

Upon examining the dataset for completeness, no missing
values were detected across all variables. This integrity
check was performed using the following Python code snip-
pet, which confirmed the absence of null entries, thereby
indicating that the dataset is well-prepared for further anal-
ysis.

missings_count = data.isnull () .sum()
print (missing_values_count)



acid(f) | acid(v) | acid(c) | sugar | chlorides | SO2(f) | SO2(t) | density | pH | sulphates | alcohol | quality
9.7 0.690 0.32 2.5 0.088 22 91 0.99790 | 3.29 0.62 10.1 5
6.6 0.580 0.02 2.4 0.069 19 40 0.99387 | 3.38 0.66 12.6 6
9.2 0.755 0.18 2.2 0.148 10 103 0.99690 | 2.87 1.36 10.2 6
9.0 0.785 0.24 1.7 0.078 10 21 0.99692 | 3.29 0.67 10.0 5
10.6 0.360 0.57 2.3 0.087 6 20 0.99676 | 3.14 0.72 11.1 7
Table 1. Part of data from the wine dataset

Variable Missing Values | [~ 7

Fixed Acidity 0

Volatile Acidity 0

Citric Acid 0

Residual Sugar 0

Chlorides 0

Free Sulfur Dioxide 0

Total Sulfur Dioxide 0

Density 0

pH 0

Sulphates 0

Alcohol 0

Quality 0

Table 2. Count of Missing Values per Variable in the Dataset

The output of the missing value checking is in Table 2.

2.2. Statistical Overview

The dataset was statistically analyzed to understand the cen-
tral tendency and variability of the physicochemical proper-
ties. Visualizations were constructed to highlight the mean
and standard deviation of each feature inf figure [2]. Specif-
ically, red rectangles were used in the plots to indicate the
range within one standard deviation above and below the
mean, offering insights into the spread and distribution of
the data points.

3. Methodology

In our study, we employed various machine learning meth-
ods to predict wine quality and used specific data process-
ing techniques to enhance model performance. In the Main
Models section, we detail three primary machine learning
models: Logistic Regression, Random Forest, and XG-
Boost. These models were chosen for their interpretabil-
ity, ability to handle complex relationships, and efficient
optimization, respectively. For instance, in section 3.1.1,
we discuss the use of Logistic Regression for its simplicity
and interpretability in modeling wine characteristics, while
section 3.1.2 focuses on Random Forest’s ability to capture
intricate feature interactions and improve prediction relia-
bility. In section 3.1.3, we elaborate on XGBoost’s opti-

Figure 2. Distribution of Dataset

mized gradient boosting framework, which excels in han-
dling large-scale datasets and complex models. In the Prin-
cipal Component Analysis section (3.2), we utilized PCA
for data dimensionality reduction to extract the most repre-
sentative features and reduce noise impact. This is further
demonstrated, where we explain the standardization of data,
computation of covariance matrix, and extraction of prin-
cipal components to streamline our dataset. To further im-
prove the model’s robustness, we adopted Huber Loss in the
Huber Loss section (3.3) for the regression task, mitigat-
ing the influence of outliers. Then we discuss the formula-
tion and benefits of Huber Loss compared to traditional loss
functions, and then we provide a detailed comparison and
visualization to demonstrate its effectiveness in our wine
quality prediction.

3.1. Main Models
3.1.1 Logistic Regression

Logistic regression is employed in our experiment to model
the relationship between 11 float-type features describing
wine characteristics (such as pH, acidity, and alcohol con-
tent). This model is chosen for its ability to provide in-
terpretable insights into how these features influence wine
quality due to its simplicity, computational efficiency, and
interpretability of results.
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Figure 3. PCA

3.1.2 Random Forest

In our study, Random Forest emerges as a robust choice
for predicting wine quality. This ensemble learning method
excels in capturing intricate relationships and interactions
among these features, making it adept at handling the com-
plexities inherent in our dataset. By aggregating predictions
from multiple decision trees, Random Forest mitigates over-
fitting and enhances the generalization ability of our model,
thereby providing reliable predictions of wine quality across
a spectrum of potential input variables.

3.1.3 XGBoost

XGBoost, short for eXtreme Gradient Boosting, is an
efficient and highly optimized machine learning algorithm
widely used for various supervised learning tasks such
as regression, classification, and ranking. Built upon the
gradient boosting framework, XGBoost iteratively trains
multiple weak classifiers, optimizing the gradient direction
of the loss function at each step to enhance the overall
predictive capability of the model.

The algorithm excels in handling large-scale datasets
and complex models due to its parallelized processing and
highly optimized implementation. Furthermore, XGBoost
supports multiple loss functions and evaluation metrics,
such as squared error, logarithmic loss, and Huber loss, al-
lowing us to select suitable objective functions based on
specific problem requirements. In this project, we are using
Huber loss as our loss function when running our models,
which is a robust loss function as described in the following
section.

3.2. Principle Component Analysis

Principal Component Analysis (PCA) is a statistical tech-
nique used for dimensionality reduction while preserving
as much variability as possible. It involves a mathematical
procedure that transforms a number of correlated variables
into a smaller number of uncorrelated variables called prin-
cipal components.

The first step in PCA is to standardize the data. Given
a data matrix X, where each column represents a variable,
and each row represents a data point, the standardized ver-
sion Z is computed as:

Z=(X-p)fo

where p is the mean and o is the standard deviation of
the columns of X.
The covariance matrix C of Z is then computed as:

c=—L 777
n—1

where n is the number of data points.

PCA proceeds by calculating the eigenvalues A and the
corresponding eigenvectors v of the covariance matrix C.
The eigenvalues are sorted in descending order, and their
corresponding eigenvectors are aligned accordingly. The
eigenvector associated with the largest eigenvalue repre-
sents the direction along which the data varies the most,
termed the first principal component. The eigenvalues on
the diagonal of matrix D represent the variance explained
by each component, where D is a diagonal matrix:

D = diag(A1, A2, ..., Ap)

The principal components are then given by:

P=Zv

where P is the matrix of principal components, and v is
the matrix of eigenvectors of C'.

This transformation is visualized in Figure [3], where the
diagonal of the matrix formed by the principal components
P contains the eigenvalues, ordered from the largest to the
smallest. The first principal component is the one associated
with the largest eigenvalue, indicating it captures the most
significant variance within the dataset.

The PCA process thus helps in reducing dimensionality
by identifying the most expressive features, represented by
the eigenvectors associated with the largest eigenvalues, and
eliminating less significant features.

Considering the uniform format of our dataset, we fur-
ther attempt to employ PCA techniques to reduce the di-
mensionality of our inputs. This visualization in Figure
represents the outcome of our principal component analysis
applied to all data points, normalized by their eigenvalues



along the diagonal, arranged in descending order of eigen-
value magnitude. Larger eigenvalues denote features with
stronger expressive capability, while smaller ones indicate
weaker correlation.

Within the information conveyed by all data, we infer
that there might be some components affected by noise. Our
aim is to extract more prominent components of represen-
tation and eliminate less significant features. In the Experi-
ments section, we will present the relevant outcomes of our
PCA application.
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Figure 4. Principal Component Analysis (PCA) visualization

3.3. Huber Loss

Outliers can have a significant impact on the performance
of regression models, especially when using MSE as the
loss function. MSE squares the residuals, which means that
large errors (outliers) can disproportionately influence the
overall loss. This can lead to models that are overly sensi-
tive to outliers, resulting in poor generalization.
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Figure 6. Visualization of L2

Figure 5. Visualization of some
Loss and Huber Loss

of our data, red rectangle means
the scope of [u — 20, pu + 20]

As shown in the figure, based on our visualization of the

data, we found that some data points deviate more than 2
standard deviations from the mean. These data points cause
significant error accumulation in the L2 Loss (MSE) in the
right figure. However, for the Huber Loss, we mitigate this
impact.

Huber Loss mitigates this problem by behaving like
MAE for large residuals. MAE linearly penalizes large er-
rors, reducing the influence of outliers compared to MSE.
By combining the properties of MSE for small errors and
MAE for large errors, Huber Loss provides a robust ap-
proach that is less sensitive to outliers. Huber Loss is a
robust loss function used for regression tasks, providing a
balance between Mean Squared Error (MSE) and Mean Ab-
solute Error (MAE). It is defined as follows:

1.2
Ls(a) = 50 1 for |a| <6
d(la] — 50) forla| >4

where a is the residual (y — ¢), and ¢ is a threshold pa-
rameter that determines the point where the loss function
transitions from quadratic to linear.

This function is smooth and differentiable, making it
suitable for optimization tasks. The derivative of the Hu-
ber Loss with respect to a is given by:

dLs(a) Ja ifla] <4
da |6 -sgn(a) ifla| >0

By transitioning from a quadratic form to a linear form
at 0, the Huber Loss reduces the influence of outliers
while maintaining sensitivity to small errors. Comparison
between Quadratic and Linear Loss:

- Quadratic Loss (Lz(7) = x?) is very sensitive to large
values of z (outliers), as the loss grows quadratically with
increasing .

- Linear Loss (L (x) = |z|) is more robust against outliers,
as the loss increases linearly with x, not exaggerating the
impact of outliers.

To further understand how Huber loss manages outliers,
consider the gradient for a single data point:

- For |z] < §:
d
—Ls(z) =2
dx 5(2)
This implies that within this range, for smaller errors, the
update step is proportional to the size of the error, similar to
a standard quadratic loss function.

- For |z| > ¢:

d

%L,;(a:) =4 -sgn(x)

This means that when the error is large, the gradient does
not increase with the size of the error but remains at a con-
stant value (6 or —¢), thus reducing the influence of outliers
in parameter updates.



Smooth Huber Loss (Pseudo-Huber Loss)

The smooth Huber loss, also known as the Pseudo-Huber
loss, provides a continuously differentiable approximation
to the Huber loss. It is defined as:

L,(z) = 4° ( 1+ (f;) — 1)

In our wine quality prediction project, we utilized Huber
Loss to handle the regression task robustly. We set § based
on the standard deviation of the target variable ‘quality‘ to
balance the sensitivity to outliers and the smoothness of the
loss function.

Huber Loss proved to be effective in our project by
providing robustness against outliers while maintaining
smoothness for optimization. The selection of § based on
the data’s standard deviation further enhanced its perfor-
mance. The detailed effect of our use of Huber loss will
be shown in experiments.

4. Experiments

We implemented our code using Python version 3.11 and
the experiments were designed to assess the effectiveness
of our proposed methods in predicting outcomes based on a
comprehensive dataset.

4.1. Experimental Environment

4.1.1 Datasets

The dataset used in our experiments was downloaded from
Kaggle, a well-known platform for data science competi-
tions and datasets. This dataset contains detailed informa-
tion and is suitable for the tasks we aim to perform, ensuring
the reliability and relevance of our results.

4.1.2 Hardware Configuration

The experiments were conducted on a workstation equipped
with the following specifications:

* CPU: Intel Core 19

* RAM: 32GB

4.2. Evaluation Metrics

The Mean Squared Error (MSE) is defined as follows:

1 n
MSE =~} (yi — ) ()
. ;( )
where n is the number of data points, y; is the actual
value, and ; is the predicted value. The MSE measures
the average of the squares of the errors—that is, the average
squared difference between the estimated values and the ac-
tual value.

We used MSE (Mean Squared Error) as the primary eval-
uation metric. It has several advantages: MSE squares the
errors before averaging, which means that larger errors are
penalized more heavily. This is beneficial in our context
because it ensures that the model is not just accurate on
average but also avoids large prediction errors, which can
be particularly important for quality prediction tasks where
large deviations from the true value can be critical. It is a
smooth and differentiable function, making it suitable for
optimization algorithms like gradient descent. This prop-
erty ensures that the model training process is stable and
converges effectively. It also provides a clear and inter-
pretable measure of the model’s prediction error. The error
is measured in the same units as the output variable (after
taking the square root), which makes it easier to understand
the performance of the model in practical terms. It is also
the same evaluation metrics as Kaggle’s.

4.3. Ablation Study for Wine Quality Prediction

To understand the impact of different models, loss func-
tions, and feature processing techniques on the prediction
of wine quality, we conducted an ablation study. The re-
sults of this study are summarized in Table 3, where we
compare the performance of various models using different
configurations.

Experiment 1 utilized Logistic Regression with MSE as
the loss function and PCA for feature extraction. The result-
ing MSE was 0.618, with a Kaggle result of 0.627. Logis-
tic Regression is a linear model that provides interpretable
insights into the relationships between features and the tar-
get variable. However, its simplicity may limit its ability
to capture complex non-linear relationships within the data,
leading to higher prediction errors.

Experiment 2 used Random Forest with MSE as the loss
function and PCA for feature extraction. This configura-
tion achieved the best performance with an MSE of 0.133
and a Kaggle result of 0.353. Random Forest, an ensem-
ble learning method, aggregates predictions from multiple
decision trees, capturing intricate relationships and interac-
tions among features. The use of PCA helped reduce di-
mensionality and noise, further enhancing the model’s per-
formance. The parameters used include 100 trees and a
maximum depth of 10, ensuring a balance between model
complexity and overfitting.

Experiment 3 employed a Decision Tree with MSE as
the loss function and PCA for feature extraction. The MSE
result was 0.233, and the Kaggle result was 0.574. Decision
Trees are simple and interpretable but tend to overfit the
data, especially with high-dimensional features. Although
PCA reduced the dimensionality, the single-tree structure
could not generalize well, resulting in higher prediction er-
rors compared to Random Forest.

Experiments 4 and 5 involved Neural Networks. Exper-



Experiment H Model Loss Function Features Performance Metric Result Kaggle Result(MSE)
1 Logistic Regression MSE PCA MSE 0.618 0.627
2 Random Forest MSE PCA MSE 0.133 0.353
3 Decision Tree MSE PCA MSE 0.233 0.574
4 Neural Network MSE PCA MSE 0.542 0.437
5 Neural Network Huber loss PCA MSE 0.219 0.425
6 Xgboost MSE PCA MSE 0.378 0.410
7 Xgboost Huber loss PCA MSE 0.354 0.395

Table 3. Ablation study showing the impact of different models, loss functions, and feature processing techniques on the prediction of wine

quality. The best performance is highlighted in bold in the table.

iment 4 used MSE as the loss function, while Experiment
5 used Huber Loss, both with PCA for feature extraction.
The resulting MSEs were 0.542 and 0.219, with Kaggle re-
sults of 0.437 and 0.425, respectively. Neural Networks are
powerful in modeling complex relationships but require ex-
tensive tuning. In Experiment 5, Huber Loss provided ro-
bustness against outliers by behaving like MAE for large
residuals, which improved performance. The neural net-
work architecture included two hidden layers with 64 and
32 neurons, and ReLU activation functions, optimized us-
ing Adam with a learning rate of 0.001.

Experiments 6 and 7 utilized XGBoost. Experiment 6
used MSE as the loss function, while Experiment 7 used
Huber Loss, both with PCA for feature extraction. The re-
sulting MSEs were 0.352 and 0.354, with Kaggle results of
0.410 and 0.395, respectively. XGBoost is a highly efficient
gradient boosting algorithm that excels in handling large-
scale datasets. While it provided competitive results, its
performance with MSE was slightly worse than with Huber
Loss. The robustness of Huber Loss to outliers improved
the model’s stability. The parameters for XGBoost included
a learning rate of 0.1, a maximum depth of 6, and 100 boost-
ing rounds.

The ablation study highlights that Random Forest with
MSE as the loss function and PCA for feature extraction
achieved the best performance in predicting wine quality.
Additionally, the use of Huber Loss generally improved
the models’ robustness to outliers, leading to better perfor-
mance compared to using MSE alone.

4.4. Analysis of Generalization

Based on the Kaggle results and local evaluations from
the table, we can analyze the generalization capabilities
of each model. In the Kaggle competition, Logistic Re-
gression showed mediocre performance with an MSE of
0.627, indicating higher prediction errors when faced with
unknown data and weaker generalization ability. In con-
trast, Random Forest demonstrated strong generalization
ability with an MSE of 0.353 on Kaggle, effectively cap-
turing data patterns and maintaining lower prediction er-
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Figure 7. Kaggle results

rors. However, Decision Tree performed poorly on Kaggle
with an MSE of 0.574, possibly due to overfitting and sen-
sitivity to data noise. Neural Network and Xgboost showed
consistent performance across different loss functions, es-
pecially Xgboost with MSE and Huber Loss yielding 0.410
and 0.395 respectively, indicating robust generalization ca-
pabilities under various data conditions.

5. Conclusion

This study explored the predictive modeling of red wine
quality based on physicochemical properties using various
machine learning techniques. Our research aimed to estab-
lish robust predictive models that correlate specific physic-
ochemical attributes with sensory outcomes, utilizing mod-
els such as Logistic Regression, Random Forest, Neural
Networks, and XGBoost, with dimensionality reduction via
Principal Component Analysis (PCA) and robust loss func-
tions like Huber Loss.

From the ablation study, it was evident that Random For-
est with MSE loss function and PCA for feature extraction
provided the best performance, achieving an MSE of 0.133
and a Kaggle result of 0.353. This indicates the Random
Forest’s strength in capturing intricate relationships and in-
teractions among features, which was further enhanced by
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PCA’s dimensionality reduction capabilities. Additionally,
the use of Huber Loss improved the robustness of models
like Neural Networks and XGBoost against outliers, lead-
ing to better performance compared to using MSE alone.

Logistic Regression, while providing interpretable re-
sults, was limited by its linear nature and could not cap-
ture complex non-linear relationships in the data. Decision
Trees, despite their simplicity and interpretability, suffered
from overfitting, which PCA alone could not mitigate.

From Figure [8], we conclude that Neural Networks show
significant improvement with the adoption of Huber Loss,
demonstrating the importance of robust loss functions in
managing outliers and improving prediction accuracy. XG-
Boost also benefited from Huber Loss, though its perfor-
mance with MSE was competitive, highlighting its effi-
ciency in handling large-scale datasets and complex mod-
els.

In conclusion, combining feature engineering techniques
like PCA with advanced ensemble methods and robust
loss functions significantly enhances the prediction of wine
quality. These findings underscore the potential of machine
learning in the wine industry, providing valuable insights
for winemakers to improve production strategies and mar-
ket positioning. Future work could explore the integration
of additional data sources, such as sensory evaluation scores
and climatic conditions, to further refine the predictive mod-
els and enhance their practical applicability in real-world
scenarios.
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